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Can Computational Models Be Used to Assess the 
Developmental Toxicity of Environmental Exposures? 
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Scope of the Problem 

Environmental chemicals are natural and man-made compounds to which human populations are 
continually exposed as a matter of individual lifestyle, local geography, and community life. The 
Centers for Disease Control and Prevention (CDC) National Health and Nutrition Examination 
Survey (NHANES) surveys the U.S. population every two years to determine which chemicals get 
into people and at what concentrations [CDC, 2017]. NHANES has measured 308 environmental 
chemicals in blood or urine. Yet, we are all exposed to many more chemicals daily and lack data on 
developmental effects scenarios for most of the chemical landscape. The U.S. Environmental 
Protection Agency’s (EPA) Aggregated Toxicology Resource (ACToR) database indicates that 
developmental effects data are available for less than ~30% of 9,912 chemicals in commerce or of 
relevant environmental interest. And there are more chemicals synthesized on a daily basis. With 
tens of thousands of untested chemicals in the marketplace, the traditional animal-based paradigm 
does not meet the assessment needs. 

In 2007, the National Research Council published Toxicity Testing in the 21st Century: A Vision and 
a Strategy (NRC, 2007). This report addressed the potential for automated high-throughput 
screening (HTS) and high-content screening (HCS) assays and technologies to identify chemically 
induced biological activity in human cells and to develop predictive models of in vivo biological 
response. This document ignited a shift in thinking from traditional animal endpoint-based testing to 
human pathway-based risk assessment paradigm. Since 2007 a surfeit of HTS/HCS data has fueled 
the paradigm shift and led to ‘big-data’ and integrative models for “encoding the toxicological 
blueprint of active substances that interact with living systems”, quoting Sturla and co-workers. 
Unprecedented amounts of data from genomic sciences, epidemiological studies, and HTS assays 
now provide the opportunity to profile the toxicological landscape. Impetus for this work is bolstered 
by the need to assess tens of thousands of environmental chemicals under European Registration, 
Evaluation, and Authorization of Chemicals (REACH) legislation and The Frank R. Lautenberg 
Chemical Safety for the 21st Century Act (Amended TSCA) in the United States. Under Amended 
TSCA, the EPA must prioritize and carry out studies to accelerate the development of scientifically 
valid test methods and strategies that reduce, refine, or replace the use of vertebrate animals and as 
well consider the impacts of chemical exposures on pregnant women and children as potentially 
exposed or susceptible populations. 

Predictive Toxicology 

As the primary source for regulatory developmental toxicity information, prenatal animal studies are 
used to characterize adverse pregnancy outcomes in rats and rabbits. The traditional paradigm is 
designed for a health protective effects assessment based on observation of fetal malformations in 
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scenarios using relatively high doses. Approximately one in six chemicals show prenatal 
developmental toxicity under standard test conditions. For example, an initial assessment of adverse 
outcomes from standard prenatal developmental toxicity studies entered into the U.S. Environmental 
Protection Agency's (EPA) Toxicity Reference Database (ToxRefDB) revealed potential 
developmental toxicity for 53 of 283 (18.7%) environmental chemicals that had been tested in both 
pregnant rats and rabbits. If one of six chemical compounds were to evoke adverse developmental 
activity in a traditional testing paradigm, then prenatal exposure and developmental hazard data 
would be needed for some 13,800 of 83,000 environmental compounds falling under TSCA. A tiered 
testing strategy is therefore needed to filter large chemical inventories for follow-up studies. For 
example, an HTS assay that predicts teratogenicity in a human stem cell-based system in EPA's 
Toxicity Forecaster Database (ToxCastDB) reveals an exposure-based potential for 181 of 1065 
(17.0%) environmental chemicals. Although the 17.0% positives predicted by a human stem cell 
response in vitro closely matches the 18.7% positives predicted by in vivo animal studies, only about 
one-third of those chemicals are predicted by both types of assays – human stem cells on the one 
hand and rat/rabbit studies on the other. Uncertainties exist even for compounds assessed by 
traditional animal models in translating results to human populations. Teratologists may turn to 
various kinds of in silico models to help reduce the uncertainties by providing information on 
exposure pathways and toxicological mechanisms. 

Exposure Models 

Environmental chemicals encompass a very wide diversity of chemical structures. Publicly available 
in silico models have been described with predictive application for developmental toxicity utilizing 
structure–activity relationships (SAR). Because the chemical structure is usually known, some 
developmental toxicants may be classified by a ‘decision tree’ for determining whether or not a 
chemical has receptor-binding properties and structural features consistent with related chemical 
structures known to have developmental or reproductive toxicity endpoints. The SAR decision tree 
could be used as a component of a tiered screening system to identify chemicals of potential 
concern or as a starting point for hypothesis-based testing. 

Kinetic models predict what happens to the chemical once it enters the body: Absorption following 
oral intake, breathing dust, or contact with the skin; Distribution and partitioning to different body 
compartments; Metabolism to chemical forms that are more or less biologically active; and Excretion 
from the body. ADME factors vary by individual, species, and chemical based on the particular 
xenobiotic (foreign chemical) metabolizing enzymes in the organ. Kinetic models can predict internal 
dose to a human embryo when the mother is exposed to low concentrations of the chemical for 
prolonged periods of time. Such information is necessary to determine the range of exposures that 
may be relevant for potential human toxicity. These models do not, however, address mechanisms. 

Adverse Outcome Pathways (AOPs) 

Teratogenic mechanisms may be modeled conceptually as an adverse outcome pathway (AOP) 
(Figure 1). An AOP starts with a distinct molecular initiating event (MIE) and describes the sequelae 
of key events (KEs) that culminate in a measureable adverse outcome (AO) relevant to effects 
assessment. An AOP says “here is a biological perturbation that can lead to a specific adverse 
outcome, and here is how we think it happens”. A particular malformation, such as thalidomide-
induced phocomelia or alcohol-induced craniofacial defects, is constructed from weight-of-evidence 
supporting MIE targets and KE relationships for developmental toxicity and from biological 
understanding of developmental pathways and processes. 
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Figure 1. Principles for building an AOP. (1) AOPs are not chemical-specific, but rather based on 
biological motifs of failure. (2) AOPs are modular, with the individual relationships based on weight of 
evidence from the extant literature. (3) Individual AOPs are a pragmatic simplification and are 
constructed as a linearized sequence of biology. (4) AOP networks are, in most cases, the functional 
unit of prediction. (5) AOPs are living documents and evolve as knowledge grows. A knowledgebase 
holds the compendium of AOPs with demonstrated relevance to the mode-of-action for specific 
chemicals and may be accessed from the internet at https://AOPwiki.org. Figure courtesy of D 
Villeneuve, US EPA. 

In 2000, the National Academy of Sciences issued a report advocating the use of detailed 
knowledge about cell signaling pathways to help elucidate mechanisms in developmental toxicity. 
That report summarized a listing of molecules mediating cell signaling pathways across species and 
developmental processes as well as the qualitative relationships between the molecular components 
in 17 cell–cell signaling pathways and two stress response pathways having conserved roles in 
animal development. Although these pathways provide a means to understand how cellular 
decisions are timed, controlled, and orchestrated during embryogenesis, it still remains to be 
determined how they are wired into AOPs for prenatal developmental toxicity. For example, 
cyclopamine, a natural plant product consumed by foraging sheep, blocks cholesterol esterification 
of the sonic hedgehog protein (SHH) as an MIE, leading to a disruption of SHH signaling that 
patterns forebrain development and in turn formation of a single midline eye (cyclopia) as an 
adverse outcome. 

High-throughput screening 

Automated technologies originally developed for pharmaceutical screens are now being used to 
profile cellular effects of thousands of chemical compounds in commerce or potentially entering the 
environment. In a drug development paradigm, chemical libraries containing thousands of unique 
structures may be rapidly screened for target biological activity against specific cell lines in a high-
throughput mode. Active compounds may be used as leads to design compounds that would have 
the desired in vivo efficacy; they are then evaluated in animal tests, clinical trials, and post-marketing 
surveillance. For example, the National Center for Advancing Translational Sciences of the NIH has 
the capacity for automated high-throughput screening of 100-200K compound libraries across 
dozens of in vitro assays. 
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Applying the pharmaceutical high-throughput screening paradigm to toxicity testing turns the drug 
discovery process upside down (Figure 2). Environmental chemicals of unknown or suspected 
human toxicity may be tested through hundreds of in vitro assays. Computers are then used to look 
for patterns of biological activity across the assay portfolio and chemical library. These profiles may 
be compared with reference compounds of well-characterized biological activity or interrogated in 
different ways, looking for in vitro signatures that are potentially diagnostic of in vivo toxicities. For 
example, EPA’s ToxCast™ project is providing high-throughput screening data on ~2000 chemicals 
for proof-of-concept on ~600 assays. The broader “Toxicity Testing for the 21st century” (Tox21) 
federal consortium is ramping up to test ~8000 chemicals of importance to commerce and the 
environment [http://www.epa.gov/ncct/toxcast/]. Alternative assays, such as embryonic stem cells 
and free-living zebrafish embryos, can be used to rapidly test chemical effects in systems 
undergoing morphogenesis, growth, and differentiation. 

Figure 2. HTS paradigm for pharma (top) and industrial chemicals (bottom). Databases and 
computer models that track exposure-disease correlations, as well newer technologies that permit 
‘high-throughput screening’ of the molecular and cellular pathways of toxicity can help to fill in our 
knowledge gap with respect to developmental toxicity of environmental chemicals. 

‘Big-Data Analytics’ 

The older concept of one chemical, one target has become outdated with the realization that 
environmental chemicals, as well as many pharmaceuticals, have a range of potential molecular 
targets that may engage at different concentrations, cell types, lifestages, or physiological states. 
EPA’s ‘ToxCast Dashboard’ helps users examine high-throughput assay data to inform chemical 
safety decisions. To date, the dashboard has data on over 9000 chemicals and information from 
more than 1000 high-throughput assay components [https://www.epa.gov/chemical-
research/toxcast-dashboard] including nearly a million concentration-response curves that can be 
mined for complex relationships between chemical structures, molecular targets, and cellular 
responses. Users of the dashboard can explore the dataset from a chemical or an assay viewpoint. 
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After selecting the chemicals and assays of interest he or she can then explore the biological activity 
for the chemical-assay combinations. 

New science can emerge from analysis of the surfeit of HTS data and information now available for 
thousands of chemicals in the ToxCast/Tox21 databases. But, a practical need arises to tie these 
data in some way to formal biological understanding. This effort is part of a bigger picture, ‘big-data’ 
analytics: looking for hidden correlations that are difficult to extract from individual association in 
large sets of unsorted, noisy data. Challenges facing this type of predictive modeling include 
correlating in vitro concentration-response with internal dose-response kinetics, understanding how 
in vitro bioactivity profiles can be extrapolated from one cell-type or technology to another, and 
linking individual targets of in vitro bioactivity into pathways of toxicity. These challenges cycle back 
to a need for computational models that merge high-throughput screening data with biological 
knowledge. A deep understanding of embryological development, intuition for new technologies and 
approaches to the study of birth defects, and a concern for environmental influences on human 
development are all driving the new vision on where environmental health protection needs to go. 
Computational biology is uniquely positioned to advance this science and technology. For 
developmental toxicology, this means making sense of ‘big-data’ on a broader scale without falling 
prey to a meaningless mass of interconnected data linkages. 

Computational Biology 

The explanatory and predictive power of simple informal models has its limits. Development 
functions through ‘systems dynamics’. As the biological complexity becomes clearer to us, a more 
quantitative approach has become essential for predicting developmental toxicity. Computational 
models can help translate genetic signals and responses at the subcellular level into multicellular 
networks that drive morphological development at the organ level. Multicellular Agent-Based Models 
(ABMs) that execute a morphogenetic series of events can bridge the gap between in vitro profiling 
and in vivo response at different concentrations of chemical. The general idea of an ABM is to 
represent the ‘cell’ of an embryonic tissue as an ‘agent’, i.e. the smallest fundamental unit capable of 
an autonomous decision. Individual agents and their interactions are coded into modeling software 
such as CompuCell3D.org based on our understanding of cellular signals, responses, and 
behaviors. Each simulated cell, like a biological cell, processes local cues from its environment and 
behaves according to its own blueprint or history. Running a multicellular simulation enables cell-cell 
interactions in a shared microenvironment that includes an array of physiological signals that 
mediate cell-cell communication. The collective multicellular behavior results in some emergent 
(non-coded) property that can be recorded, analyzed, and interpreted in ways similar to experimental 
teratology. 

Rendering an ABM is ideal for predictive toxicology because it integrates information across different 
biological scales including molecular information (internal clocks, biochemical gradients, and gene 
regulatory networks), cellular properties (growth, adhesion, and differentiation), and tissue-level 
properties (homeostasis, morphogenesis, and repair). These approaches have successfully been 
applied to reconstruct a morphogenetic series of events and perturb them as an approximation. See 
developmental toxicity models for the vasculature, genital tubercle, and palate for examples (Figure 
3). 
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Figure 3. Cell agent-based 
model of palatal 
development. Made practical 
by computational advances 
and quantitative data from 
HTS, these dynamical models 
formally reconstruct tissue 
development cell-by-cell, 
interaction-by-interaction. The 
model shown here 
recapitulates the outgrowth and 
fusion of paired palatal shelves 
in the embryo to form a uniform 
rudiment of the hard palate. 
Introducing perturbations to 
key genetic signals and 
responses gives rise to in silico 
phenotypes or ‘cybermorphs’. 
By introducing ToxCast lesions 
into the model, the computer 
simulates lesion propagation 
through various developmental 
trajectories and returns a 
quantitative prediction of cleft 
palate [Hutson et al., 2017]. 

 

 

 

So, to return to the original question, “Can Computational Models Be Used To Assess The 
Developmental Toxicity of Environmental Exposures?” Certainly they can operationalize in vitro data 
from HTS testing platforms. Much effort is being expended today to realize this goal for the future. 
EPA’s Virtual Embryo is building and testing computational (in silico) models that may make high-
throughput screening data useful in a quantitative risk assessment of developmental toxicity 
[http://www.epa.gov/ncct/v-Embryo/]. 

Disclaimer: The United States Environmental Protection Agency through its Office of Research and 
Development funded and managed the research described and this paper has been subjected to 
Agency review and approved for publication. Reference to commercial products or services does not 
constitute endorsement. 
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